ADVANCING GIPATIENT GIPATIENT 2022 Powered by: GIAlliance

APRIL 23–24, 2022 SOUTHLAKE, TEXAS

G Alliance

This activity is supported by an educational grant from Phathom Pharmaceuticals Inc., Ferring Pharmaceuticals Inc., Madrigal Pharmaceuticals, Merck & Co., Inc., Janssen Biotech, Inc., administered by Janssen Scientific Affairs, LLC, and Takeda Pharmaceuticals U.S.A., Inc.

Management of Patients With Hepatocellular Carcinoma: 2022 Update

Amit G. Singal, MD, MS Willis C Maddrey Distinguished Chair in Liver Disease Professor of Medicine, Digestive and Liver Diseases Chief of Hepatology and Medical Director, Liver Tumor Program UT Southwestern Medical Center

 I have served as a consultant or served on advisory boards for Genentech, AstraZeneca, Bayer, Eisai, Bristol Meyer Squibb, Exelixis, FujiFilm Medical Sciences, Glycotest, Exact Sciences, Roche, and GRAIL

Hepatocellular Carcinoma Is 3rd Leading Cause of Cancer-Related Death Worldwide

GLOBOCAN 2020.

HCC Projected to Be 3rd Leading Cause of Death in US by 2035

Rahib et al. JAMA Network Open. 2021

Most HCC Occur in the Setting of Chronic Liver Disease, if Not Cirrhosis

Prognosis Strongly Associated With Tumor Stage at Diagnosis

The sale

HCC Surveillance Associated With Improved Survival in Cirrhosis

	Hazards ratio (95%
•	0.57 (0.43, 0.76)
┿─-	0.63 (0.28, 1.42)
•	0.75 (0.69, 0.82)
-	0.46 (0.24, 0.86)
•	0.62 (0.48, 0.78)
•	0.45 (0.30, 0.66)
∔	0.60 (0.38, 0.93)
+	0.52 (0.35, 0.76)
•	0.76 (0.71, 0.82)
 ←	0.90 (0.69, 1.19)
•	0.92 (0.79, 1.07)
+	0.66 (0.43, 0.99)
•	0.51 (0.38, 0.69)
•	0.52 (0.43, 0.62)
┝	0.70 (0.54, 0.91)
•	0.22 (0.06, 8.26)
+	0.59 (0.37, 0.93)
•	0.76 (0.64, 0.91)
•	0.60 (0.55, 0.66)
•	0.34 (0.16, 0.72)
•	0.51 (0.39, 0.67)
•	0.66 (0.64, 0.68)
	HR 0.64 (95% CI 0.59

Los Bar

С

- 0.69)

Patient Case 1

- Mr. Jones is a 54-year-old male who initially presented for HCV treatment
- During evaluation, diagnosed with early-stage (BCLC A) HCC
 - Unifocal with max diameter 3.4 cm (LR-5 on imaging)
- He has compensated cirrhosis without portal HTN.
 - Child Pugh A: Bilirubin 0.7, Albumin 4.0, INR 1.0
 - Platelet count 172
 - AFP 42
 - Good performance status, ECOG 0
- What is the best treatment option?

HCC Can Be Diagnosed Radiographically With Need for Biopsy

LI-RADS Category	Concept and Definition	
LR-1 Definitely Benign	Concept: 100% certainty observation is benign. Definition: Observation with imaging features diagnostic of a benign entity, or definition disappearance at follow up in absence of treatment.	finite
LR-2 Probably Benign	Concept: High probability observation is benign. Definition: Observation with imaging features suggestive but not diagnostic of a benity.	penign
LR-3 for HCC	Concept: Both HCC and benign entity have moderate probability. Definition: Observation that does not meet criteria for other LI-RADS categories.	
LR-4 Probably HCC	Concept: High probability observation is HCC but there is not 100% certainty. Definition: Observation with imaging features suggestive but not diagnostic of HC	CC.
LR-5 Definitely HCC	Concept: 100% certainty observation is HCC. Definition: Observation with imaging features diagnostic of HCC or proven to be at histology.	нсс
LR-5V Definitely H Tumor in Ve	with Concept: 100% certainty that observation is HCC invading vein. Definition: Observation with imaging features diagnostic of HCC invading vein.	
LR-M Probable malignancy specific for	 Concept: High probability that observation is a malignancy, but imaging features not specific for HCC. Definition: Observation with one or more imaging features that favor non-HCC malignancy. 	are
LR-Treated Obse	Concept: Loco-regionally treated observation. Definition: Observation that has undergone loco-regional treatment	

Surgical Therapy Affords Excellent Long-Term Survival for Early-Stage HCC

-

Llovet et al. Hepatology. 1999; Mazzaferro et al. N Engl J Med. 1996.

SBRT Has Increasing Data Supporting Role in HCC Treatment

Table 3. Multivariate Cox Proportional Hazards Analysis of Factors Associated With Local Progression						
	HR	95% CI	Р			
Treatment RFA v SBRT	3.84	1.62 to 9.09	.002			
Age	1.01	0.97 to 1.06	.514			
Tumor size	1.35	0.99 to 1.84	0.55			
Child-Pugh Score	0.95	0.74 to 1.22	.703			
AFP	1.12	0.97 to 1.30	.130			
No. prior treatments	1.25	1.00 to 1.56	0.55			

SBRT associated with better outcomes than RFA for HCC > 2cm in propensity matched analyses

NOTE. Age (per year), tumor size (per cm), Child-Pugh score (per point), AFP (per doubling) and No. prior treatments (per treatment) were treated as continuous variables.

Abbreviations: AFP, alpha-fetoprotein; HR, hazard ration; RFA, radiofrequency ablation; SBRT, stereotactic body radiation therapy. Wahl et al. *JCO*. 2016.

Patient Case 1 Follow-Up

- Mr. Jones is a 54-year-old male with Child A cirrhosis, no significant portal HTN, who was found to have early-stage (BCLC A) HCC, max 3.4 cm
 - Child Pugh A: Bilirubin 0.7, Albumin 4.0, INR 1.0
 - Platelet count 172
 - AFP 42
- Patient underwent robotic resection without complication
 - Discharged 3 days later
 - Doing well with no recurrence on surveillance imaging

- Ms. Smith is a 52-year-old female with history of NASH cirrhosis who was incidentally found to have a liver lesion
- MRI shows intermediate stage (BCLC stage B) HCC, 2 lesions (LR-5) – 4.9 cm and 2.0 cm in maximum diameter, both in right lobe
 - Child Pugh B: Bilirubin 1.1, Albumin 3.4, INR 1.1, well controlled ascites
 - Platelet count 59
 - AFP 79
 - Good performance status, ECOG 0
- What is the best treatment option?

TACE Provides High Response Rate and Improves Survival

Pooled ORR was 52% and median survival ~19 month	າຣ
--	----

	No. of Studies	Estimate	Lower 95% Cl	Upper 95% CI
Median, mo				
≤2002	19	18.5	14.6	22.4
>2002	44	19.8	15.5	24.1
1-year, %				
≤2002	19	70.7	63.2	78.3
>2002	71	70.4	65.2	75.5
2-year, %				
≤2002	21	51.1	37.1	65.1
>2002	50	52.0	43.9	60.2
3-year, %				
≤2002	13	27.8	18.3	37.4
>2002	53	43.4	34.9	51.8

Lencioni et al. Hepatology. 2016.

TARE Likely Has Role in Treatment of BCLC Stage B HCC

Salem et al. Gastro. 2016.

BCLC Stage B Has Heterogeneous Prognosis

- Prognostic model specifically developed for ideal TACE candidates (N = 1,604; treatment naïve)
 - Child-Pugh A-B7
 - PS 0
 - No VI/mets
 - No history of tumor rupture
 - No GIB, ascites, HE, or jaundice
- BCLC B: 74%
- "Linear predictor = largest tumor diameter (cm) + tumor number"

Median OS, mo	32.9 (95% Cl, 30.4–35.4)
≦6	49.1 (95% Cl, 43.7–59.4)
> but ≥12	32.0 (95% Cl, 29.0–37.5)
>12	15.8 (95% Cl, 14.1–17.7)

3-Year Survival Probability and Tumor Burden

Survival Prediction With Tumor Burden in Recommended TACE Candidates

Largest tumor diameter, cm	Good Moderate outcome		e	Poor outcome							
+ tumor number	2	4 (68	10	12	14	16 18	20	22 24	26	28 30
1-y survival probability	0.9	1		0.8		0.7	0.6	0.5	0.4	0.3	0.2
2-y survival probability	0.8	0	.7	0.6	0.5	0.4	0.3	0.2	0.1		
3-y survival probability	0.7	0.6	0.5	0.4	0	.3 0).2 () .1			
Median survival, mo	80 60	50	40	30		20			10		

Patients Within UNOS-DS Criteria Can Achieve Good Survival

Multicenter study of patients undergoing LT from 2012-2015

comparing downstaged patients (n=422) vs. within Milan (n=3276) vs. beyond Milan (n=121)

UNOS-DS: One HCC >5 and ≤8 cm, two to three HCC >3 cm and ≤5 cm and diameter ≤8 cm, or four to five lesions each ≤3 cm and diameter ≤8 cm

Mehta et al. Hepatology. 2020.

Asia-Pacific Expert Consensus Statement for TACE Unsuitability

- A. Conditions that easily become refractory to TACE:
 - Beyond up-to-seven criteria
- B. Conditions in which TACE causes deterioration of liver function to Child-Pugh class B:
 - Beyond up-to-seven criteria
 - ALBI grade 2
- C. Conditions that are unlikely to respond to TACE (TACE-resistant tumor):
 - Simple nodular type tumor with extranodular growth
 - Confluent multinodular type tumor
 - Massive type tumor
 - Poorly differentiated HCC
 - Intrahepatic multifocal metastasis
 - Sarcomatous change caused by TACE

Kudo et al. Liver Cancer. 2020.

Systemic Therapy May Be Preferred in Patients With Large or Multinodular BCLC B HCC

** p<0.05 (Lenvatinib vs. TACE) ** p<0.01 (Lenvatinib vs. TACE) # p<0.01 (vs. TACE at baseline)</p>

In State

ABC-HCC Trial: Randomized, multi-center open-label, phase 3 study

Patient Case 2 Follow-Up

- Ms. Smith is 52-year-old female with Child B NASH cirrhosis who had BCLC stage B HCC – 4.9 cm and 2.0 cm in max diameter
 - Child Pugh B: Bilirubin 1.1, Albumin 3.4, INR 1.1, well controlled ascites
 - Platelet count 59 and AFP 79
- Ms. Smith undergoes radioembolization without complication
- Imaging 3 months after treatment demonstrates partial response with tumor burden now within Milan Criteria
 - 4.9 cm HCC \rightarrow 2 cm viable disease and 2 cm HCC \rightarrow complete response
- She is listed for liver transplantation and underwent transplant without complication after stable disease * 6 months

Patient Case 3

- Mr. Brown is a 63-year-old male with compensated EtOH cirrhosis who presented with abdominal pain
- Large liver mass found on CT performed in ED
- MRI shows advanced (BCLC stage C) HCC with main portal vein invasion and adrenal metastasis
- Compensated cirrhosis and good performance status
 - Child Pugh A: Bilirubin 1.2, Albumin 3.2, INR 1.1
 - AFP 1729
- What is the best treatment option?

Notable advances in treatment options for advanced stage HCC

1 m Bar

Ferrante et al. Gastro Hep. 2020.

IMBrave150: Atezolizumab/ Bevacizumab vs. Sorafenib

• **Primary endpoints:** PFS and OS

All patients were required to have recent EGD to risk stratify risk of bleeding

Finn et al. New Eng J Med. 2020.

Atezolizumab and Bevacizumab Improves Survival for Patients With Advanced-Stage HCC

Finn et al. New Eng J Med. 2020.

Durvalumab + Tremelimumab Improves Survival in Front-Line Setting for Advanced Stage HCC

HR 0.78 (95%CI 0.65 - 0.92) Time from randomization (months)

Abou-Alfa et al. ASCO GI. 2022.

There Are Sequential Systemic Therapy Options Available

100 500

Patient Case 3 Follow-Up

- Mr. Brown is a 63-year-old male with compensated EtOH cirrhosis who is found to have advanced stage HCC
 - Child Pugh A: Bilirubin 1.2, Albumin 3.2, INR 1.1
 - AFP 1729
- EGD shows small varices but no other high-risk stigmata
- Started on atezolizumab and bevacizumab, tolerated well with no complication
- Partial response on imaging at 2 months and continues to have stable disease

Multidisciplinary Care Improves HCC Outcomes

Study	Description	Outcomes
Serper 2017 (n=3988)	Multi-specialty evaluation or tumor board	Increase HCC treatment receipt and improve survival
Yopp 2014 (n=355)	Single day MDT clinic and conference	Improve early detection, curative treatment, time to treatment, and survival
Zhang 2013 (n=343)	Single day MDT clinic	Changed imaging/pathology interpretation and therapy plan
Chang 2008 (n=183)	Fluid referrals and joint conference	Improve early detection, curative treatment, and survival

SI.

Serper et al. Gastro. 2017; Yopp et al. Ann Surg Onc. 2014; Chang et al. HPB. 2008; Zhang et al. Curr Oncol. 2013.

Ongoing Trials of Immunotherapy in Earlier Stages of Disease

	Select Phase III	Trials of Adjuvant Therapy		Select Phase III Trials with		
	Trial	Description		Trial		
1	IMbrave050	Adjuvant atezolizumab + bevacizumab		EMERALD-1	Durvaluma	
(CheckMate 9DX	Adjuvant nivolumab		CheckMate 74W	Nivoluma	
	KEYNOTE-937	E-937 Adjuvant pembrolizumab		LEAP-012	Lenvatinib	
				TACE-3	Ν	
	EMERALD-2 Adjuvant durvalumab ± bevacizumab			EMERALD-1	Durvaluma	

Select Phase III Trials with Locoregional Therapy				
Trial	Description			
EMERALD-1	Durvalumab ± bevacizumab + TACE			
CheckMate 74W	Nivolumab ± ipilimumab + TACE			
LEAP-012	Lenvatinib + pembrolizumab + TACE			
TACE-3	Nivolumab + TACE			
EMERALD-1	Durvalumab ± bevacizumab + TACE			

- Best survival observed in patients with early-stage HCC given curative options including surgical resection, liver transplantation, and local ablation
 - Highlights importance of surveillance and early referral
- TACE and TARE are primary therapies for intermediate stage HCC
 - Important to consider downstaging for patients with extended criteria
- There are a growing number of systemic treatment options for advanced HCC
 - 1st line: Atezolizumab/bevacizumab, Durvalumab/tremelimumab, Sorafenib, or Levantinib
 - 2nd line: Regorafenib, Cabozantinib, Ramucirumab, Pembrolizumab, Ipilimumab/Nivolumab
- Multidisciplinary care improves outcomes for patients with HCC, particularly as treatment landscape evolves

