ADVANCING GIPATIENT GARE 2022 Powered by: GIAlliance

APRIL 23–24, 2022 SOUTHLAKE, TEXAS

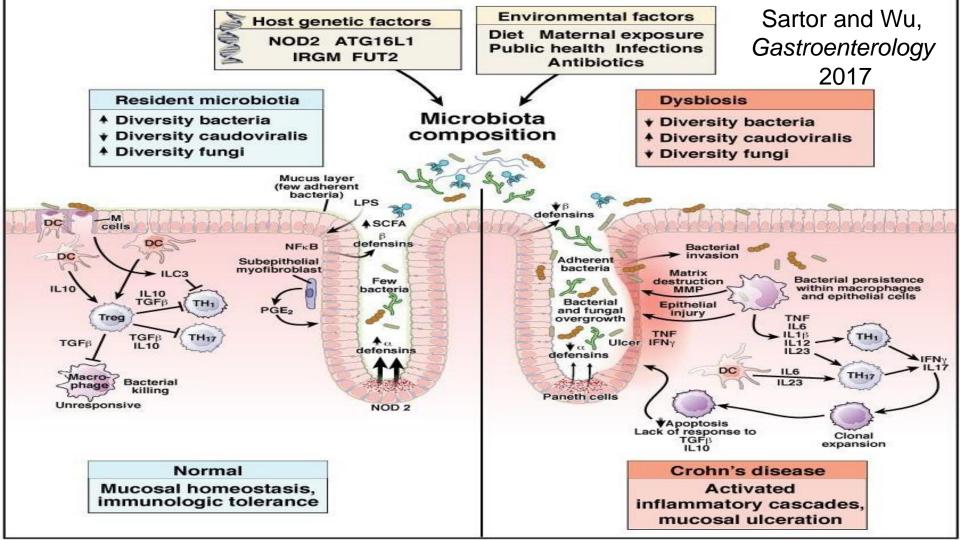
G Alliance

This activity is supported by an educational grant from Ferring Pharmaceuticals Inc., Janssen Biotech, Inc., administered by Janssen Scientific Affairs, LLC, Madrigal Pharmaceuticals, Merck & Co., Inc., Phathom Pharmaceuticals Inc. and Takeda Pharmaceuticals U.S.A., Inc.

Beyond Probiotics in **GI** Diseases: How Can We More Effectively Manipulate the Gut Microbiota?

R. Balfour Sartor, MD Midget Distinguished Professor of Medicine, Microbiology & Immunology Director, Multidisciplinary IBD Center and National Gnotobiotic Rodent Resource Center University of North Carolina- Chapel Hill

Grant support for microbial preclinical studies:


• Janssen, Vedanta, Gusto Global, BiomX, Biomica, Artizan, SERES, Second Genome

Consulting/ Advisory Boards:

 Dannon/Yakult, Second Genome, SERES Health, Vedanta, Otsuka, Gusto Global, BiomX, Biomica, Takeda

Rationale of Manipulating Gut Bacteria

- Abnormal microbial balance in many GI diseases
- Microbiota contribute to multiple GI diseases: IBD, pouchitis, *C. diff*, fatty liver, ETOH hepatitis
- Restoring microbial balance is an attractive therapeutic alternative or adjuvant approach to prolonged immunosuppression, repeated antibiotics and available therapies

Protective Effects of the Normal Microbiome

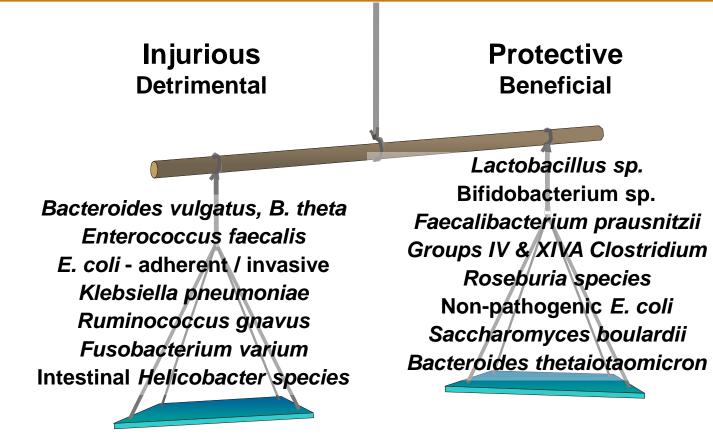
Property

Example

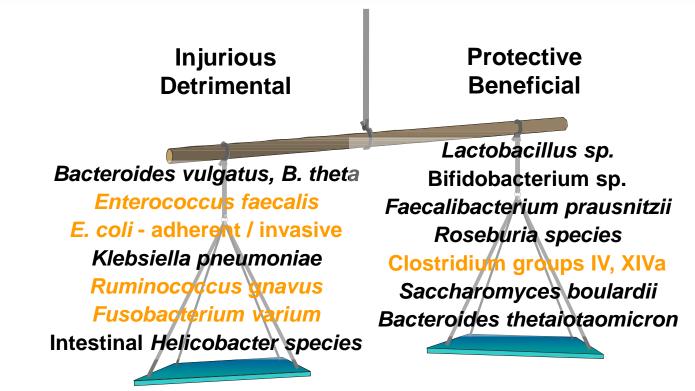
An Bar

- Colonization resistance (prevent infection Clostridialis difficile)
- Activate innate epithelial defenses (TLR/NFkB, NLR in epithelial cells, stimulation of anti-microbial peptides, mucus production)
- Educate immune responses (mucosal homeostasis IL-10, TGFβ, inducible Treg, enhanced killing of intracellular bacteria)
- Host nutrition (SCFA provide nutrition for colonic epithelial cells, vitamin K synthesis)
- Modulate neuronal function (modulate pain threshold, enteric nervous system, CNS responses)

Microbiome Association With Immune-Mediated Inflammatory Diseases


<u>Strong</u> (? Causal)

- Crohn's disease
- Ulcerative colitis, pouchitis
- Metabolic syndrome, T2D
- Fatty liver, ETOH hepatitis
- Spondyloarthropathy
- Atherosclerosis, bronchitis
- Colon cancer, cystic fibrosis


<u>Weaker</u>

- (? Secondary but contributory)
- PSC
- Psoriasis, psoriatic arthritis
- Type 1 diabetes
- Rheumatoid arthritis
- Asthma
- Osteoarthritis
- Celiac disease
- Uveitis

Intestinal Inflammation vs. Homeostasis Depends on the Relative Balance of Beneficial vs. Detrimental Bacteria: *This Balance Is Unique in Each Individual - Each Individual Responds Differently to Various Bacterial Species*

Intestinal Inflammation vs. Homeostasis Depends on the Balance of Beneficial vs. Detrimental Bacteria: Selectively Altering this Balance in an Individual Should Treat Ongoing Inflammation and Potentially Prevent Onset/Recurrence of Disease in High-Risk Hosts

Strategies to Correct Dysbiosis in IBD

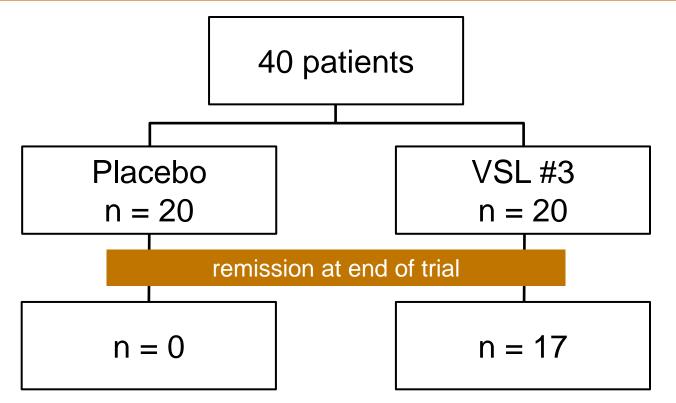
- Standard antibiotics and probiotics
- Replace entire microbiome (fecal microbial transplant *FMT*)
- Remove aggressive components (antibiotics, phages, block attachment)
- Restore missing protective microbes
- Restore missing protective *functions*
- Create a less hostile environment (*diet, remove toxic metabolites* and metabolites that promote dysbiosis)

Probiotics: Clinical Trials in IBD

<u>UC</u>:

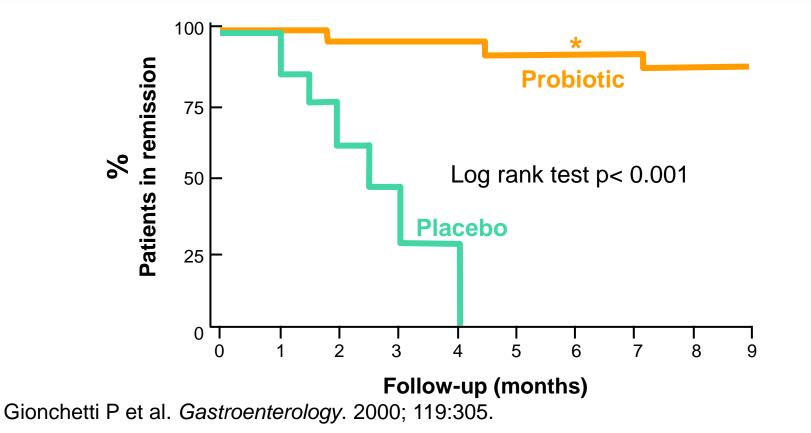
- <u>E. coli 1917 Nissle</u> equal to low dose 5-ASA (1.6 gm/day)¹
- <u>VSL #3</u> uncontrolled, 75% remission 12 mo.², 87% response for 6 wks³

<u>Crohn's</u>:


- <u>E. coli Nissle</u> superior to placebo⁴
- <u>Lactobacillus</u> <u>GG</u> no effect postoperative relapse⁵

Pouchitis:

- <u>VSL #3</u> superior to placebo treat refractory, recurrent⁶
- <u>VSL #3</u> superior to placebo postop prevention⁷
- Lactobacillus rhamnosus GG no benefit active disease⁸


1. Kruis. 1997; Rembacken. 1999; Kruis. 2001; 2. Venturi. 1999; 3. Fedorak. 2005; 4. H. Malchow. 1997; 5. C. Prantera. 2002; 6. P. Gionchetti. 2000, 2001; 7. P. Gionchetti. 2003; 8. J. Kuisma. 2003.

VSL#3 Maintains Remission in Chronic, Relapsing Pouchitis

Gionchetti et al. Gastroenterology. 2000;119:305-309.

Pouchitis – Maintenance of Remission by VSL3

- In patients with *C difficile* infection, we recommend the use of probiotics only in the context of a clinical trial. (*no evidence, knowledge gap*)
- In adults and children on antibiotic treatment, we suggest the use of *S. boulardii*; or the 2-strain combination of *L. acidophilus* CL1285 and *L. casei* LBC80R; or the 3-strain combination of *L. acidophilus*, *L. delbrueckii* subsp *bulgaricus*, and *B. bifidum*; or the 4-strain combination of *L. acidophilus*, *L. delbrueckii* subsp *bulgaricus*, *B. bifidum*, S. *salivarius* subsp *thermophilus* over none or other probiotics to prevent *C difficile* infection. (*conditional, low evidence*)

- 3. In adults and children with Crohn's disease, we recommend the use of probiotics only in the context of a clinical trial *(knowledge gap)*
- 4. In adults and children with **ulcerative colitis**, we recommend the use of probiotics only in the context of a clinical trial *(knowledge gap)*
- In adults and children with pouchitis, we suggest the 8-strain combination of *L paracasei* subsp paracasei, *L. plantarum*, *L. acidophilus*, *L. delbrueckii* subsp bulgaricus, *B. longum* subsp *longum*, *B. breve*, *B. longum* subsp *infantis*, and *S. salivarius* subsp *thermophilus* over no or other probiotics (conditional, very low evidence)

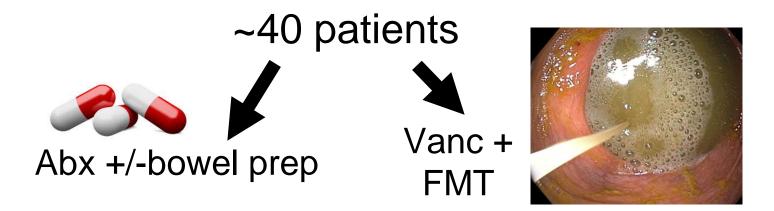
- 6. In symptomatic children and adults with IBS, we recommend the use of probiotics only in the context of a clinical trial (*knowledge gap*)
- In children with acute infectious gastroenteritis, we suggest against the use of probiotics (Conditional, moderate evidence)

8. In preterm (less than 37 weeks gestational age), low-birth-weight infants, we suggest using a combination of Lactobacillus spp and Bifidobacterium spp (L rhamnosus ATCC 53103 and B longum subsp infantis; or L casei and B breve; or L rhamnosus, L acidophilus, L casei, B longum subsp infantis, B bifidum, and B longum subsp longum; or L acidophilus and B longum subsp infantis; or L acidophilus and B bifidum; or L rhamnosus ATCC 53103 and *B longum* Reuter ATCC BAA-999; or *L acidophilus*, B bifidum, B animalis subsp lactis, and B longum subsp longum), or B animalis subsp lactis (including DSM 15954), or L reuteri (DSM 17938 or ATCC 55730), or L rhamnosus (ATCC 53103 or ATC A07FA or LCR 35) for prevention of NEC over no and other probiotics. (Conditional, moderate/ high evidence)

Strategies to Correct Dysbiosis in IBD

- Standard antibiotics and probiotics
- Replace entire microbiome (fecal microbial transplant- FMT)
- Remove aggressive components (*antibiotics*, *phages*, *block attachment*)
- Restore missing protective microbes
- Restore missing protective *functions*
- Create a less hostile environment (*diet, remove toxic metabolites and metabolites that promote dysbiosis*)

Don't Like Your Microbiota? Trade It in for a New Model!



Dysbiosis

Normal microbiota

FMT Is Highly Effective for Recurrent *Clostridialis difficile*

Cure at 2 months for recurrent C. diff30%90%

van Nood. NEJM 2013; Cammarota. Alimentary Pharmacology Therapeutics. 2015.

Randomised Controlled Trials Fecal Micobial Transplant (FMT) in Ulcerative Colitis (UC)

Gastroenterology 2015Moayyedi et al
(McMaster)Rossen et al
(Amsterdam)

6 x weekly enemas **FMT** 9/38 (**24%**) v 2/37 (**5%**) P=0.03 One donor for 7 / 9 responders

2 naso-duodenal infusions wks 0 & 3 FMT 7/23 (30%) v 5/25 (20%) P=0.51

Conflicting results regarding the efficacy and optimal delivery of FMT in UC

Fecal Microbial Transplantation Induces Remission in Patients With Active UC: Strong Donor Effect

Results from a Randomized Controlled Trial

	Placebo (n=37)	FMT	(n=38)	<i>P</i> Value	
Remission	2 (5%)	9 (2	24%)	.03	
Response	9 (24%)	15 (39%)		.16	
	Donor	B	All Ot	her Donors	
Clinical Remission	7/18 (39	%)	2/20 (10%)		
luly 2012	April 2013	Nov	DMC me ember 2013	June 2014	
				1	
50% donor A and 509	6 donor B Mixture do	onors A, C, D), E, F All dono	er B	
2 patients in remissio	on 2 patients	2 patients in remission		ts in remission	
Both donor B	One donor	One donor E, one donor F			

Moayyedi P et al. Gastroenterology. 2015;149:102-109.

FMT for GI Diseases

Indications:

- Recurrent *C. diff* infection
- Investigational: UC; hepatic encephalopathy; Crohn's disease; pouchitis; metabolic syndrome/fatty liver; immune checkpoint inhibitor therapy

I an Bar

Problems:

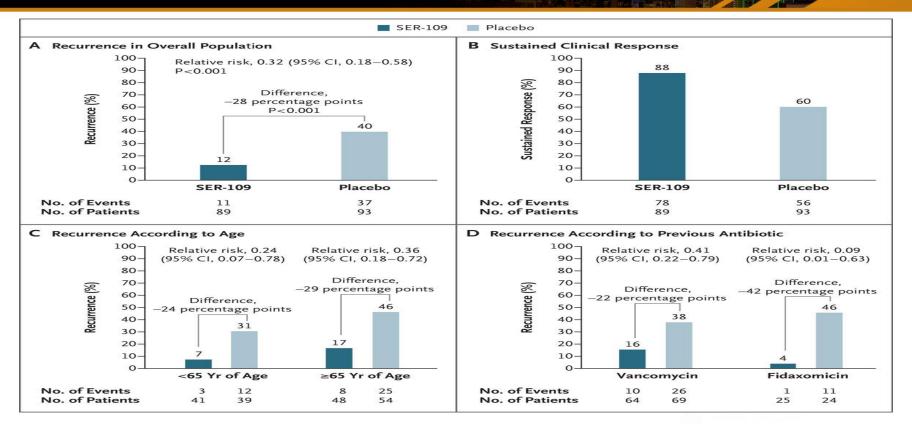
- Transient engraftment
- Transmission of unknown pathogens, multidrug resistant *E. coli*
- Sepsis in immunocompromised host
- Variability of donor microbiota and efficacy

Summary: The *Potential* of Manipulating the Microbiota Remains Greater Than Current Results

 Antibiotics helpful in a few selected indications: pouchitis, Crohn's colitis, ? postoperative CD

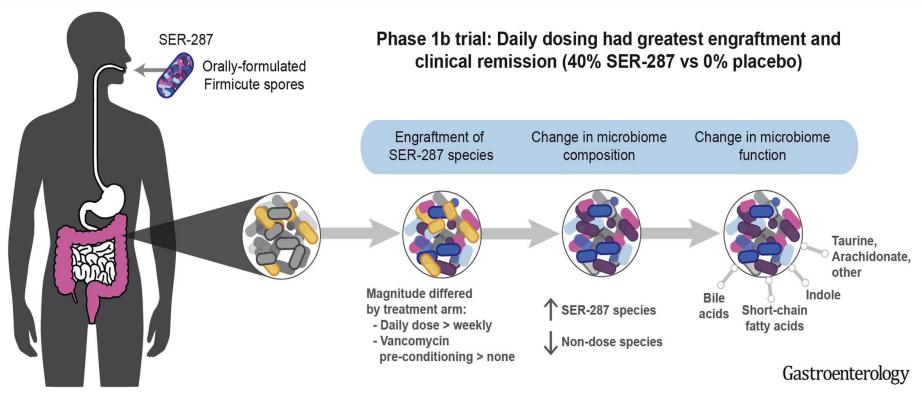
1 - But

- Broad spectrum, combinations needs further exploration UC and CD
- Combination probiotics may help recurrent pouchitis, prevent NEC
- Prebiotics: No clear benefits, but poorly studied
- FMT variable results, but minority enter remission, limited duration, strong donor effect


Conclusion

Either our hypothesis that resident microbiota provide the dominant drive the inflammatory response of IBD is incorrect, <u>or we are using the wrong approaches</u>

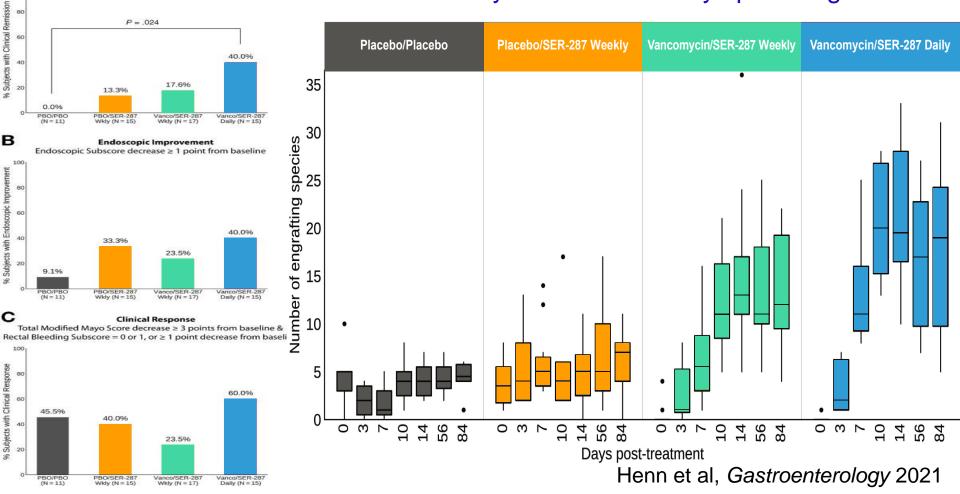
Synthetic Consortia of Resident Bacterial Species vs. Random Donor-Derived Fecal Transplants

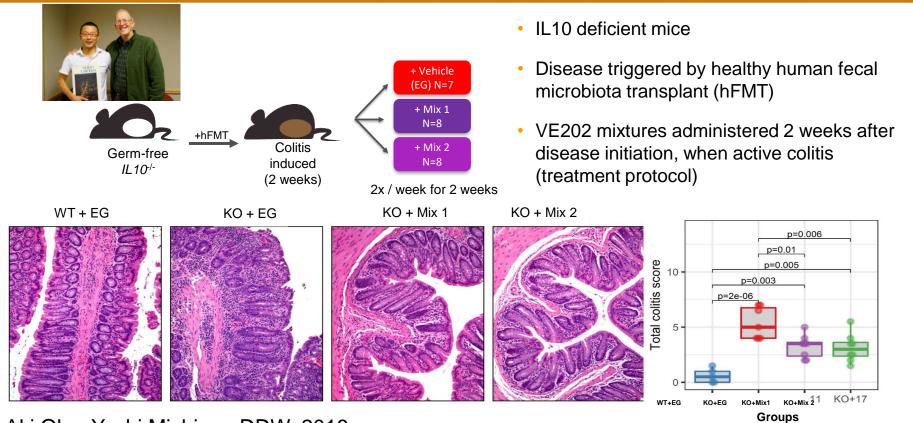

- Defined *composition eliminate risk of infections*
- Ability to individualize therapy match optimal replacement for various dysbiotic profiles
- More reproducible results *eliminate variability in outcomes*
- Simplify regulatory approval with defined composition
- Manufacture under standard, highly controlled culture conditions eliminate variability in outcomes
- Increase patient acceptance decrease "yuk" factor

Resident Bacterial Spores (SER-109) Decrease Recurrence of C. difficile Infection Up to 8 weeks (Intention-to-Treat Population)

P Feuerstadt et al. N Engl J Med. 2022;386:220-229.

Clostridium Spores in Active UC


Henn et al, Gastroenterology 2021


A

100

Clinical efficacy is determined by spore engraftment

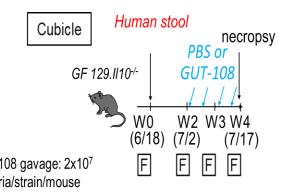
17 Clostridium Stains and 11 Strain Subset Treat Colitis in a Humanized Mouse Colitis Model

Aki Oka, Yoshi Mishima. DDW. 2018.

Missing Microbial Functions in the IBD Dysbiotic Gut Microbiome

Function	Reference		
SCFA synthesis	Arpaia et al, 2013; Smith et al, 2013; Vernia et al, 2000 8 2003		
Bile acid conversion	Duboc et al, 2013		
Indole synthesis	Circumstantial evidence, e.g. Berstad et al, 2015		
Bacteriocin synthesis	antagonism		
Siderophore synthesis/ uptake	Niche competition with opportunistic pathogens		
Essential nutrient fluxes	Key for engrafting and optimal performance		

In the second

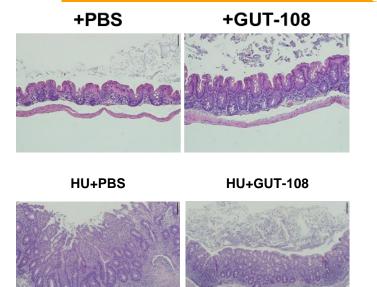

Van der Lelie et al. Nat Comm. 2021.

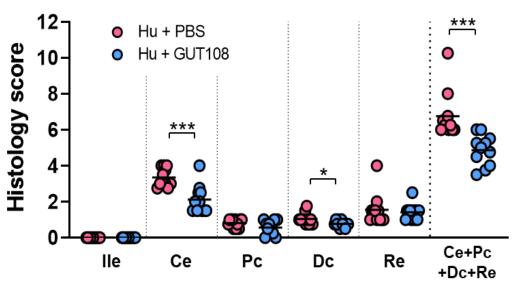
GUT-108 Experimental Design

Disease triggered by human fecal microbiome transplant in IL-10 -/- mice

Strain Nr.	Butyrate	Propionate	GABA	Indole	Bile Acid	
1		+	+	+	7-α-HSD, CGH, 3-oxo-5-α	
Ш		+	+	+	CGH, 3-oxo-5-α, SBS]
	+				$7-\alpha$ -HSD, CGH, Taurine uptake	
IV	+		+		7-α-DH, 7-α-HSD, CGH, SBS]
V		+	+		CGH, 3-οxo-5-α	
VI	+				7-α-HSD, CGH, LCD, Taurine uptake	
VII					3-α-HSD, 3-β-HSD	
VIII					7α/β –DH, LCD	
IX					7-α-DH, 3-α-DH, 7-α-HSD, CGH, LCD	
X		+	+	+	SBS	GUT
XI	+	+			LCD	bact

Van der Lelie et al. *Nat Comm.* 2021.




GUT-108

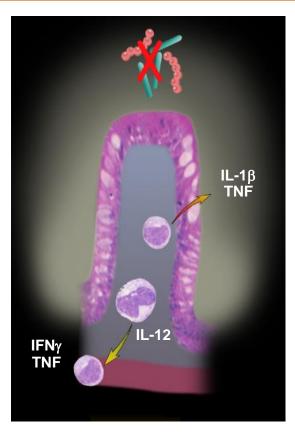
- Simplified 11 strain consortium based on proprietary strains.
- Same functions covered as by GUT-103, but further optimized for IPA synthesis and bile acid conversion.

GUT-108 Therapeutic Study: Reversing Colitis Caused by Human Fecal Transplant in IL10 -/- Mice

Histologic evidence of colitis

Van der Lelie et al. Nat Comm. 2021.

Improving Current Techniques to Restore a Healthy Microbiota


- Select approach and targets based on an individual's microbiota pattern (customized approach- selectively replace missing/ dysfunctional bacteria)
- Concentrate on protective resident species with a good chance to colonize and function in the intestine
- Refine fecal transplants, identify characteristics of optimal donors and determine their effectiveness and duration in IBD
- Determine whether *dietary approaches* can alter composition and metabolic function of microbiota in therapeutic or preventive manners
- Target outcomes based on metabolic function and dominant antigens rather than bacterial profiles

Sequential, Safer Approach to Treating IBD: Maintain Long Term Remission by Correcting Dysbiosis and Dietary Management

Eliminate antigenic drive

Antibiotics, probiotics prebiotics, diet, fecal transplant, block bacterial binding, enhance bacterial killing (stimulate defensins) Remove pathobiontpromoting metabolites

Paralyze TH₁, TH₁₇, innate immune responses Steroids, biologics, small molecules

Restore mucosal barrier function SCFAs, probiotics, fiber/ prebiotics

Stimulate regulatory cell activity (TR₁, TH₃, Treg, B cells, DC) Omega 3 FAs, retinoic acid, vit D, Bacteroides fragilis PSA. Clostridium subsets, F. prausnitzii, Lachnospiraceae, rationally designed consortia