Surgical Approach to Pancreatic Cancer

D. Rohan Jeyarajah, MD FACS DABS Chair of Surgery, TCU Burnett School of Medicine Program Director, HPB/AGI Fellowships Methodist Richardson Medical Center

Disclosures

- Consultant for Angiodynamics
- Consultant for Ethicon
- Consultant for SIRTEX

Outline of talk

- Defining resectability of pancreatic cancer
- Importance of margins
- Role of chemo pre/post?
- Technical aspects of surgery

Pancreatic cancer

- Terrible disease
- Poor survival:
 - 20% at 2 years
 - 5% at 5 years
- Surgery is biggest bang for the buck

When do we do surgery?

Anatomic resectablility:

- SMV
- SMA
- Celiac

Oncologic factors:

- CA 19-9
- ? mets

Patient factors:

- Recent MI
- PS

Categories:

- Resectable
- Borderline resectable (BRPDAC)
- Locally advanced
- Metastatic

MUST know

Resectable:

- Clear planes
- R0 resection expected

Borderline resectable:

• R1 expected

Locally advanced:

• Cannot take out at this time

Metastatic:

• Distant disease

Categories of BRPC

categoryANATOMICBIOLOGICCONDITIONALexampleArterial involvementElevated CA 19-9>500Recent MI		Α	В	C
example Arterial Elevated CA Recent MI involvement 19-9>500	category	ANATOMIC	BIOLOGIC	CONDITIONAL
	example	Arterial involvement	Elevated CA 19-9>500	Recent MI

Distribution of Pancreatic Cancer

Locally Advanced – Unresectable 15%

What is BRPC

TABLE 1. Definitions of BRPC

	MDACC ⁹	Alliance trial ¹⁰	AHPBA/SSAT/ SSO ¹¹
Portal vein (PV)/superior mesenteric vein (SMV)	Occlusion	Interface between tumor and vessel measuring 180° or greater of the circumference of the vessel wall, and/or reconstructable occlusion	Abutment, encasement, or occlusion
Celiac artery	Abutment	Interface between tumor and vessel measuring <i>less than 180°</i> of the circumference of the vessel wall	No abutment or encasement
Common hepatic artery	Abutment or short encasement	Reconstructable, short-segment interface between tumor and vessel of any degree	Abutment or short- segment encasement
Superior mesenteric artery (SMA)	Abutment	Interface between tumor and vessel measuring <i>less than 180°</i> of the circumference of the vessel wall	Abutment

MDACC MD Anderson Cancer Center, AHPBA Americas Hepato-Pancreato-Biliary Association, SSAT Society for Surgery of the Alimentary Tract, SSO Society of Surgical Oncology

- Tumor relationship with SMV/PV, SMA, hepatic artery, celiac axis
- <u>Resectable tumor:</u>
 - No "involvement" of any above structures
- Unresectable tumor:
 - Distant disease
 - Locally advanced

- Locally Advanced Unresectable tumor
 - >180° involvement SMA (50%)
 - Extension to celiac axis
 - HA encasement not amenable to reconstruction
 - SMV/PV encasement not amenable to reconstruction

Resectable lesion

BRPDAC

So what do we do with resectable lesion?

- NCCN guidelines allows resect if able
- Open for neoadjuvant treatment:
 - ALLIANCE TRIAL
 - Initial data suggests lower R1 rate/ N1 rate
- BUT no clear evidence that neoadjuvant treatment results in BETTER OS

Neoadjuvant Therapy : Advantages

- 1. Identification of patients with occult metastatic disease
- 2. Completion of therapy
- 3. Reduce incidence of positive margins
- 4. Reduce incidence of pancreatic leak
- 5. Oxygen delivery
- 6. Radiation of "specimen" vs. anastomoses

USING DATA FROM METASTATIC PANC CA

Van Hoff- Nab/Pacli+gem vs Gem*

INCREASED SURVIVAL IN PANCREATIC CANCER

Van hoff et al, NEJM 2013

NEOADJUVANT TREATMENT

Neoadjuvant treatment and panc ca

- Chemo:
 - FU
 - Gem/Nab-PAc
 - FOLFIRINOX
- XRT:
 - Standard (6 week)
 - SBRT (5 days)
- Future:
 - Immunotherapy
 - Check point inhibitors

Study group	Time frame	Study design	Primary endpoint	Result from intention-to-treat analysis	Strength	Weakness
Korean trial	2012–2014	Neoadjuvant gem CRT versus upfront surgery	2-year survival rate	Neoadjuvant arm had better 2-year survival rate (21 vs. 12 months)	The first multicenter RCT	Early termination of study; single-agent chemotherapy
Dutch PREOPANC	2013–2017	Neoadjuvant gem/gem CRT versus upfront surgery	Overall survival (OS)	Neoadjuvant arm had better overall survival (17.6 vs. 13.2 months)	Multicenter RCT	Mixed resectable and BRPC patients; combined single- agent chemotherapy and CRT
MGH study	2012-2016	Single-arm neoadjuvant FOLFIRINOX	R0 resection rate	31 patients (97%) achieved R0 resection	Multiagent chemotherapy; total neoadjuvant design	Single-arm phase II study
A021501	2016–2020	Neoadjuvant FOLFIRINOX versus FOLIRINOX plus hypofractionated radiation therapy	18-month overall survival (OS)	The radiation treatment arm was prematurely closed due to poor R0 resection rate	Multiagent chemotherapy; "pick-a-winner" approach; National Clinical Trials Network cooperative group study	Significant variance of surgical quality in resecting BRPC among the cooperative group

 TABLE 2
 Summary of clinical studies

Gem gemcitabine, FOLFIRINOX fluorouracil, irinotecan, and oxaliplatin, CRT chemoradiotherapy, RCT randomized clinical trial

Jun He, et al, Ann Surg Onc, 2021

PREOPANC TRIAL

• 248 pts randomly assigned

- Gem/Gem XRT 120
- Surgery first 128

FIG 2. (A) Overall survival (OS), (B) disease-free survival (DFI), (C) locoregional failure–free interval (LFFI), and (D) distant metastasis–free interval (DMFI) in 246 patients randomly assigned to preoperative chemoradiotherapy (CRT; 119 patients) or immediate surgery (127 patients) according to intention-to-treat analysis. Tick marks indicate censored observations. HR, hazard ratio.

TABLE 2. Intention-to-Treat Analyses of Primary and Secondary End Points for Both Treatment Groups

Outcome	Preoperative CRT (n = 119)	Immediate Surgery (n = 127)	HR (95% CI)	P
Primary				
Median OS, months	16.0	14.3	0.78 (0.58 to 1.05)	.0960
Secondary				
Median DFS, months	8.1	7.7	0.73 (0.55 to 0.96)	.0320
Median LFFI, months	NR	13.4	0.56 (0.38 to 0.83)	.0034
Median DMFI, months	17.4	12.5	0.82 (0.58 to 1.14)	.2400
	No. (%)	No. (%)	OR (95% CI)	
Resection rate	72 of 119 (61)	92 of 127 (72)	0.58 (0.34 to 1.00)	.0580
R0 rate	51 of 72 (71)	37 of 92 (40)	3.61 (1.87 to 6.97)	< .0010
Safety				
Patients with SAEs (all grades)	62 of 119 (52)	52 of 127 (41)	1.57 (0.95 to 2.60)	.0960

Abbreviations: CRT, chemoradiotherapy; DFS, disease-free survival; DMFI, distant metastasis–free interval; HR, hazard ratio; LFFI, locoregional failure–free interval; NR, not reached; OR, odds ratio; OS, overall survival; SAE, serious adverse event.

Neoadjuvant data re Gem/A vs FOLFIRINOX: the Colorado experience*

*Chapman et al, JOP March 2018

Conclusion:

- No benefit to NACRT in resectable/BRPC
- Improved R0 status/ Node + status

What do we do adjuvantly?

Chemo rads- JH/ Mayo experience*

Chemo alone:

- Gem
- FU/Gem
- Gem/Nab
- FOLFIRINOX

Hopkins/ Mayo experience with adjuvant chemo/XRT

Conclusion

• FU and XRT increased OS in the adjuvant setting

Then entered FOLFIRINOX

- We knew that there was metastatic data to support this
- The question was whether it would work adjuvantly

PROTÉGÉ GROUP

- 493 pts resected panc ca
- Randomized to :
 - FOLFIRINOXX 24 WEEKS
 - GEMX 24 WEEKS

• Conroy et al, NEJM, 2018

Figure 2. Kaplan–Meier Estimates of Disease-free Survival and Overall Survival in the Intention-to-Treat Population, According to Treatment Group.

The median disease-free survival was 21.6 months in the modified-FOLFIRINOX group, as compared with 12.8 months
ESPAC-4

• Gem/ Cap compared with Gem

• Neoptolemos et al , Lancet, March 2017

ESPAC-4

- 794 pts post resection
- R1 or R0
- Randomized to :
 - Gem
 - Gem /cap

Overall survival better with G/C

SO IN SUMMARY

- No clear consensus on NAT in RESECTABLE PDAC
- Adjuvant therapy improves survival in RESECTED PDAC:
 - FOLFIRINOX
 - Gem/Nab-pac
 - FU/Gem

So what about margins?

- Most data suggests that margins status does impact on survival
- How we assess margins differs:
 - Europeans <1mm= R1*
 - USA- no tumor on ink

• Verbeke et al, HPB 2008,11:18-24

US centers generally ink

- Retroperitoneal
- Bile duct
- Pancreas
- SMV

Our protocol

More + margins if you look

But what does this mean?

 Table 1
 Survival data following curative and non-curative surgical resection for pancreatic cancer

	Reference (First author/ year)	No of patients	RM status	R1 rate (%)	Median survival R1/R2 (months)	Median survival R0 R0 (months)
	Menon (2009) ²⁰	27	R1	82	14	>55
,	Westgaard (2008)36	40	R1	45	11	16
	Raut (2007) ¹⁷	360	R1	17	22	28
	Verbeke (2006) ¹⁶	26	R1	85	11	37
ļ	Neoptolemos (2001)5	541	R1	19	11	17
	Benassai (2000) ¹³	75	R1, R2	20	9	17
	Sohn (2000) ¹⁴	616	R1	30	12	19
	Millikan (1999) ¹²	84	R1	29	8	17
	Nishimura (1997)11	157	R1, R2	45	6	12
	Sperti (1996) ¹⁰	113	R1, R2	17	7	14
	Nitecki (1995)9	174	R2	16	9	NA
	Yeo (1995) ⁸	201	R1, R2	29	10	18
	Willett (1993) ⁷	72	R1	51	12	20

HPB

R0: clear margins; R1: microscopic margin involvement, R2: gross margin involvement.

Can resection of the SMV help decrease + margins?

0

Our data:

- Looked at PD from 2005-11
- 98 pts for cancer
- R1 rate 23.4%
- Smv +-23 pts
- SMV+/SMA+: 11 pts (47.8%)
- SMV+/SMA-: 12 pts (52.2%)

Our data re margins:

	R0 group	R1 group	
	SMV Margin Negative (N=75)	SMV Margin Positive (N=23)	P value
Patient Characteristics			
Male	41 (54.67%)	8 (34.78%)	P=0.095 [NS]
Female	34 (45.33%)	15 (65.22%)	P=0.095 [NS]
Median Age at Surgery (Years)	70 [42-88]	70 [48-84]	P=0.2844 [NS]
Median Charlson Comorbidity Index	6 [3-10]	6[3-9]	P=0.8047 [NS]
Median ASA Class Index	3[2-4]	3[2-4]	P=0.9214 [NS]
Median Length of Hospital Stay (Days)	12[2-40]	13[7-24]	P=0.7557 [NS]
Median Body Mass Index (kg/m ²⁾	25.3[14.3- 40.5]	23.4 [17.3- 39.2]	P=0.5464 [NS]

Operative Characteristics

Median Operative Time	3.45 [1.42-	3.13[2.16-	P=0.0003
(hours)	5.49]	4.33]	[S]
Median Estimated Blood Loss	400[100-	350 [200-	P=0.9656
(ml)	2500]	1500]	[NS]

You are operating on sick pts! UNRECOGNIZED FIBROSIS

World J Surg (2017) 41:2854–2857 DOI 10.1007/s00268-017-4101-9

ORIGINAL SCIENTIFIC REPORT

Undiagnosed Liver Fibrosis in Patients Undergoing Pancreatoduodenectomy for Pancreatic Adenocarcinoma

Andrew Gdowski¹ · Houssam Osman² · Umar Butt² · Steve Foster³ · Dhiresh Rohan Jeyarajah^{2,4}

Published online: 17 July 2017 © Société Internationale de Chirurgie 2017

Characteristic	Fibrosis Stage $0-1$ n = 19	Fibrosis Stage ≥ 2 n = 17
Average age (SD)	62.7 (7.9)	70.5 (6.5)
Stented (%)	12 (63.2)	9 (52.9)
Non-stented (%)	7 (36.8)	8 (47.1)
Bile obstruction (%)	10 (52.6)	15 (88.2)
Steatosis (%)	10 (52.6)	6 (35.3)
Adenocarcinoma (%)	15 (78.9)	17 (100)
Neuroendocrine (%)	3 (17.6)	0 (0)
Chronic lymphocytic leukemia/small lymphocytic lymphoma (%)	1 (5.3)	0 (0)
Tumor staging		
Stage 1 (%)	2 (10.5)	1 (5.8)
Stage 2 (%)	14 (73.7)	13 (76.5)
Stage 3 (%)	1 (5.3)	2 (11.8)
Stage 4 (%)	0 (0)	0 (0)
Positive surgical margin (%)	6 (31.6)	9 (52.9)

 Table 1
 Patient demographics

So lets talk surgery and technique

Principles of the Whipple:

Mesocaval Dissection & Pancreatic Head

Dissection Dissect the porta hepatis

What is this porta hepatis and what are the structures affiliated with it?

https://www.researchgate.net/figure/Relationship-of-the-common-bile-duct-inside-the-Porta-Hepatis-Supraduodenal-segment_fig2_327630709

Dissection – Arterial Anatomy

Dissection – Arterial Anatomy LMA CYSTI RGA PHA CHA GDA RGE SMA IPD

Pancreatic Head & Superior Mesenteric Vein

Ligating Arcades

Pancreatic Head Divided & Portal Vein

Pancreases Margin

Anastomosis

How I do a robotic Whipple:

Can collateral robotic surgery help the learning curve?

The learning curve

World J Surg https://doi.org/10.1007/s00268-020-05861-z

ORIGINAL SCIENTIFIC REPORT

Overcoming the Arduous Transition for Robotic Hepatopancreatobiliary Cases: A Multi-Procedure Learning Curve Study Utilizing CUSUM Analysis

Joseph S. $Lim^{1,2} \cdot Terence \ Jackson^1 \cdot James \ Kurtz^{1,3} \cdot Edward \ E. \ Cho^{1,4} \cdot Shyam \ Vedantam^1 \cdot Kei \ Nagatomo^1 \cdot Houssam \ Osman^1 \cdot Dhiresh \ Rohan \ Jeyarajah^{1,4}$

Accepted: 25 October 2020 © Société Internationale de Chirurgie 2020

Learning curve can be overcome -RDP

RPD

Robotic Heller

Our conclusion:

Robotic PD can be learned

But slope depends on experience in the surgery AND experience with other robotic procedures

My advice:

What is the data re open/ MIS Whipple?

Lap versus Open DP- LEOPARD 1

- Lap versus open DP
- Experience in lap DP
- High volume Dutch Centers

• Rooij, et al, Annals of Surgery, Jan 2019

	Minimally Invasive Distal Pancreatectomy $(n = 51)$	Open distal Pancreatectomy (n = 57)	Relative Risk (95% CI)	Р
Complications Clavien−Dindo grade ≥III	13 (25)	21 (38)	0.69 (0.39-1.24)	0.21
IIIa	10 (20)	15 (27)		
IIIb	1 (2)	2 (4)		
IVa	2 (4)	3 (5)		
IVb	0 (0)	2 (4)		
V	0 (0)	0 (0)		
Postoperative pancreatic fistula	20 (39)	13 (23)	1.72 (0.96-3.09)	0.07
Grade B	17 (33)	12 (21)		
Grade C	3 (6)	1 (2)		
Increased drain amylase/lipase level day 3*	28 (55)	31 (54)	1.01 (0.72-1.42)	0.96
Percutaneous catheter drainage	11 (22)	11 (20)	1.12 (0.53-2.36)	0.77
Postoperative delayed gastric emptying	3 (6)	11 (19)	0.30 (0.09-1.03)	0.04
Grade B	0 (0)	7 (13)		
Grade C	3 (6)	4 (7)		
Endoscopic feeding tube placement	4 (8)	14 (25)	0.32 (0.11-0.91)	0.02
Postoperative bleeding	2 (4)	2 (4)	1.12 (0.16-7.65)	>0.99
Grade B	2 (4)	1 (2)		
Grade C	0 (0)	1 (2)		
Endovascular coiling	0 (0)	2 (4)		0.50
Surgical re-intervention	1 (2)	3 (5)	0.37(0.04 - 3.47)	0.62
Surgical site infection	2 (4)	3 (5)	0.75 (0.13-4.28)	0.74
Unplanned ICU admission	5 (10)	6 (11)	0.93 (0.30-2.87)	0.90
Length of initial hospital stay, median (IQR), d	6 (4-7)	8 (6-9)		< 0.001
Readmission	15 (29)	14 (25)	1.20 (0.64-2.23)	0.57
Length of total hospital stay, median (IQR), d	6 (4–13)	8 (6-12)		0.004
Mortality	0 (0)	1 (2)		>0.99

Analyzed according to intention-to-treat. Data are expressed as median (IQR), or number (%).

*Drain amylase/lipase level higher than three times the upper level of normal serum amylase/lipase on postoperative day three.

TABLE 2. Time to Functional Recovery (Primary Outcome)

	Minimally Invasive Distal Pancreatectomy $(n = 51)$	Open Distal Pancreatectomy (n = 57)	Р
Time to functional recovery, median (IQR), d	4 (3-6)	6 (5-8)	< 0.001
Restored mobility	4 (2-5)	5 (3-6)	0.01
Reached adequate pain control with oral medication	3 (2-3)	4 (3-5)	< 0.001
Reached at least 50% required caloric intake	3 (2-5)	6 (4–7)	< 0.001
No need for fluid administration	3 (2-5)	4 (3-6)	0.001
No signs of infection	4 (3-6)	6 (5-8)	< 0.001

Analyzed according to intention-to-treat. All outcomes are expressed in days, as medians (IQR). IQR, interquartile range.

Leopard 2 Study:

- Dutch trial
- 4 centers
- Had to have done >20 lap PD
- Center must do>20PD/yr
- n Hilst, Lancet, March 2019

Leopard 2 study-time to functional recovery

Figure 2: Time to functional recovery

Van Hilst, Lancet, March 2019

Leopard 2 Study:

	Open (n=50)	Lap (n=49)
Mortality	2%	10%
Cause of death	Hemorrhage=1	Hemorrhage=2 Bowel ischemia=2 Grade C panc fistula=1

So in summary:

- Resectable/ BRPDAC/ Locally advanced PDAC
- Role of chemo- NAT and adjuvantly
- Importance of margins
- Surgical technique and learning curves

