## **Solid Liver Lesions**

Steven L. Flamm, MD, FAASLD, FACG Professor of Medicine Rush University Medical School Chicago, IL





• I have no relationships to disclose.

# Outline

| Disease<br>overview | <ul> <li>Background</li> <li>Characteristics of common liver lesions</li> <li>Basic management of a 'liver nodule'</li> </ul>                                                                 |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Guidelines          | <ul> <li>Hepatic hemangiomas*</li> <li>Focal nodular hyperplasia (FNH)*</li> <li>Hepatocellular adenoma (HCA)*</li> <li>Patients with multiple lesions*</li> <li>Screening for HCC</li> </ul> |

\*Guidelines for each nodule category cover: epidemiology, clinical characteristics, imaging and diagnosis, clinical management and key recommendations. EASL CPG benign liver tumours. *J Hepatol*. 2016;65:386–98

# Benign Solid Tumors – Background

- Heterogenous group of liver lesions
- Frequently found incidentally due to widespread imaging use
- Often have a benign course
- Some are of greater clinical relevance than others
- Clinical Practice Guidelines for benign tumors:\*
  - Hepatic hemangiomas
  - Focal nodular hyperplasia (FNH)
  - Hepatocellular adenoma (HCA)

\*Nodular regenerative hyperplasia, although its histology is 'benign', has a clinical course and management distinct from other benign lesions considered in this guideline and is not reviewed here. EASL CPG benign liver tumours. *J Hepatol.* 2016;65:386–98.

### Characteristics of Common Benign Solid Liver Lesions

|                      | Hemangioma                                   | FNH                  | НСА             |
|----------------------|----------------------------------------------|----------------------|-----------------|
| Estimated prevalence | Common<br>~5%*                               | Less common<br>0.03% | Rare<br>≤0.004% |
| Age                  | 30–50 years                                  | 20–40 years          | All ages        |
| Gender               | F > M                                        | F ~ M                | F >> M          |
| US                   | Hyperechoic                                  | Varied               | Varied          |
| СТ                   | Centripetal enhancement                      | Central scar         | Varied          |
| MRI                  | Centripetal enhancement<br>Hyperintense T2-w | Central scar         | Varied          |
| Calcification        | Yes                                          | No                   | No              |
| Rupture              | Rare                                         | No                   | Yes             |

\*Estimated prevalence in imaging series; has been reported to be as high as 20% in autopsy series. Bahirwani R, Reddy KR. *Aliment Pharmacol Ther*. 2008;28:953–65; EASL CPG benign liver tumours. *J Hepatol.* 2016;65:386–98.

#### Basic Management of a 'Liver Nodule'

#### Examination and baseline investigations

- Associated symptoms:
- Abdominal pain
- Weight loss
- Hepatomegaly
- Abnormal liver function tests
- Medical history
- Conditions associated with liver lesions (e.g. cancer, anorexia, asthenia)
- History of foreign travel or dysentery
- Medication history, particularly OCPs

- · Exclude primary tumor distant to liver
- Risk factors
  - History of/current viral hepatitis/cirrhosis
  - History of transfusion, tattoos, IV drug abuse
  - Family history of liver disease/tumours
- Alcohol excess, smoking
- Features of metabolic syndrome (obesity, T2DM, HTN, CV disease)
- Drug history (methotrexate, tamoxifen, androgens)

Following examination and baseline investigations

Contrast-enhanced imaging (CEUS, CT, MRI) for tumor characterization

- Imaging and baseline investigations should be sufficient to diagnose benign liver tumours
- In cases of significant doubt, a biopsy or resection may be appropriate
- Invasive procedures should only be pursued after consideration by an experienced MDT

EASL CPG benign liver tumours. J Hepatol. 2016;65:386-98.

### Hepatic Hemangiomas: Epidemiology/Clinical Characteristics

- Most common primary liver tumors
  - Prevalence on imaging series: ~5%<sup>1</sup>
  - Prevalence on autopsy series: up to 20%<sup>2,3</sup>
  - Most common in women aged 30–50 years<sup>3</sup>
    - Female to male ratio ranges from 1.2–6:1
    - Can occur in all age groups
- Rarely of clinical significance
  - Often solitary and small (<4 cm), although can reach 20 cm in diameter<sup>2,3</sup>
  - Most patients are asymptomatic even with large hemangiomas<sup>2,3</sup>
  - Larger tumors (>10 cm) may be symptomatic associated with pain and features of KMS (inflammatory reaction syndrome and coagulopathy)<sup>4,5</sup>

1. Horta G et al. *Rev Med Chil.* 2015;143:197–202; 2. Bahirwani R, Reddy KR. *Aliment Pharmacol Ther.* 2008;28:953–65; 3. Gandolfi L et al. *Gut.* 1991;32:677–80; 4. Hall GW. *Br J Haematol.* 2001;112:851–62; 5. O'Rafferty C et al. *Br J Haematol.* 2015;171:38–51; EASL CPG benign liver tumours. *J Hepatol.* 2016;65:386–98.

#### Hepatic Hemangiomas: Key Diagnostic Recommendations

Classic appearance on US is a homogenous hyperechoic mass

| Recommendations Gra                                                                                                                                                                                                                                                                                                  | de of evidence | Grade of recommendation |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|
| In patients with a normal/healthy liver, a hyperechoic lesion is very likely to be a liver haemangioma<br>US is sufficient for diagnosis in cases of typical radiology (homogeneous hyperechoic, sharp margin, posterior<br>enhancement, absence of halo sign) in lesions <3 cm                                      | II-2           | 1                       |
| Contrast enhanced imaging (CEUS, CT or MRI) is required in oncology patients and patients with underlying liver disease                                                                                                                                                                                              | II-2           | 1                       |
| Diagnosis by contrast-enhanced imaging is based on a typical vascular profile, characterized by peripheral and globular<br>enhancement on arterial phase followed by a central enhancement on delayed phases<br>MRI provides additional findings: e.g lesion signal on T1-, T2-weighted sequences; diffusion imaging | II-2           | 1                       |

EASL CPG benign liver tumours. J Hepatol. 2016;65:386–98.

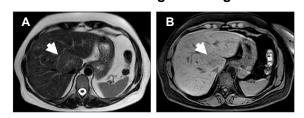
#### Hepatic Hemangiomas: Key Management Recommendations

- Hemangiomas are mostly asymptomatic incidental discoveries
  - May change in size during long-term follow-up
  - No relationship between size and complications
  - Little relationship between symptoms and characteristics
  - Benefit of surgery debatable

| Recommendations                                                                                                        |  | rade of evidence 🔲 Grade of recommendation |  |
|------------------------------------------------------------------------------------------------------------------------|--|--------------------------------------------|--|
| Due to its benign course, imaging follow-up is not required for typical hemangioma                                     |  | 1                                          |  |
| Pregnancy and OCPs are not contraindicated                                                                             |  | 2                                          |  |
| Conservative management is appropriate for typical cases                                                               |  | 1                                          |  |
| Refer to benign liver tumor MDT in the presence of KMS, growing lesions or lesions that are symptomatic by compression |  | 1                                          |  |

EASL CPG benign liver tumours. J Hepatol. 2016;65:386-98.

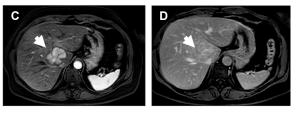
#### FNH: Epidemiology/Clinical Characteristics


- Epidemiology
  - Clinically relevant prevalence: 0.03% (autopsy series: 0.4–3%)<sup>1,2</sup>
  - Up to 90% of patients are female
  - Average age at presentation: 35–50 years
- Clinical characteristics
  - Most cases are solitary and <5 cm; multiple FNH in 20–30% of cases<sup>3,4</sup>
  - Hyperplastic hepatocellular lesions resulting from arterial malformation
  - Size is stable over time in most cases<sup>5</sup>
  - Most cases are asymptomatic and complications are extremely rare<sup>5</sup>
- Genetics
  - Upregulation of ECM genes associated with TGF- $\beta$  signaling<sup>6</sup>
  - Overexpression of Wnt/ $\beta$ -catenin target genes, e.g. GLUL<sup>6</sup>

1. Rubin RA, Mitchell DG. *Med Clin North Am.* 1996;80:907–28; 2. Marrero JA et al. *Am J Gastroenterol.* 2014;109:1328-47; 3. Nguyen BN et al. *Am J Surg Pathol.* 1999;23:1441–54; 4. Vilgrain V et al. *Radiology.* 2003;229:75–9; 5. D'Halluin V et al. *Gastroenterol Clin Biol.* 2001;25:1008–10; 6. Rebouissou S et al. *J Hepatol.* 2008;49:61–71; EASL CPG benign liver tumours. *J Hepatol.* 2016;65:386–98.

# **FNH: Imaging**




- Diagnosis is based on a combination of five imaging features:
  - 1. Lesion homogeneity, excluding the central scar
  - 2. Slight difference from adjacent liver tissue on pre-contrast US, CT and MRI (A & B)
  - 3. Strong, homogeneous enhancement on arterial phase CEUS, CT or MRI with a central vascular supply (**C**); becomes isointense to liver tissue on portal venous and delayed phases (**D**)
  - 4. Central scar best seen on MRI
  - 5. Lack of capsule with often lobulated contours



T2- and T1-weighted images

Lesion barely visible

#### **Contrast-enhanced images**



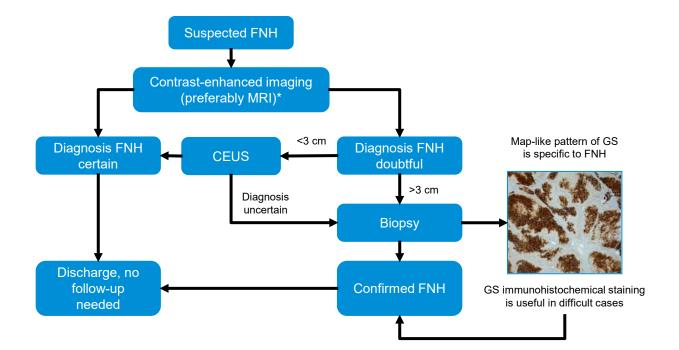
Lesion easily visible

EASL CPG benign liver tumours. J Hepatol. 2016;65:386–98.

#### **FNH: Key Diagnostic Recommendations**

- MRI sensitivity
  - Lesion >3 cm very good
  - Lesion <3 cm second imaging modality advised, such as CEUS</li>
- Refer to a specialist center if in doubt with two imaging modalities

| Recommendations                                                                                                    | ade of evidence Grad | e of recommendation |
|--------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|
| CEUS, CT, MRI: nearly 100% specificity with a combination of typical imaging features                              | II-2                 | 1                   |
| MRI has the highest diagnostic performance overall<br>Highest diagnostic accuracy by CEUS is achieved in FNH <3 cm |                      | 1                   |


#### **FNH: Key Management Recommendations**

- In the absence of symptoms a conservative management approach is recommended
- No indication for discontinuing OCPs
- Follow-up during pregnancy is not necessary

| Recommendations                                                                                        | rade of evidence | ade of recommendation |
|--------------------------------------------------------------------------------------------------------|------------------|-----------------------|
| For a typical FNH lesion, follow-up is not necessary unless there is underlying vascular liver disease | Ш                | 2                     |
| Treatment is not recommended                                                                           | II-3             | 2                     |
| If imaging is atypical, or the patient is symptomatic, refer to a benign liver tumor MDT               | III              | 1                     |

EASL CPG benign liver tumours. J Hepatol. 2016;65:386-98.

# **FNH: Management Algorithm**

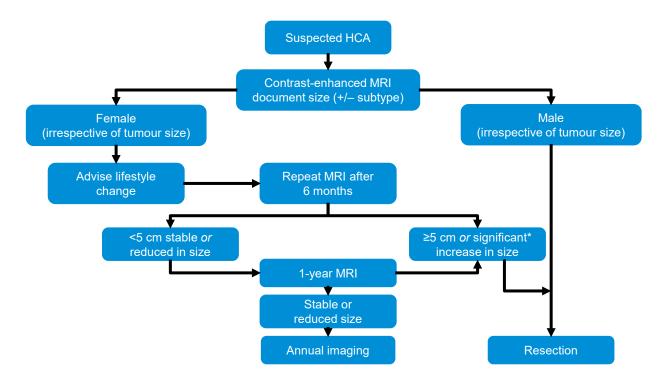


\*Imaging modalities may include US, CEUS, CE-CT and CE-MRI. EASL CPG benign liver tumours. *J Hepatol*. 2016;65:386–98.

#### Adenoma: Epidemiology/Clinical Characteristics

- Epidemiology<sup>1–3</sup>
  - Reported prevalence: 0.001–0.004%
  - ~10x less common than FNH
  - Most common in women (10:1 female to male), especially aged 35–40 years
- Potential role of sex hormones
  - 30–40-fold increase in incidence with long-term OCP use<sup>4</sup>
  - Incidence among males is associated with androgenic steroids<sup>5,6</sup>
- Recent increase in prevalence associated with rising obesity and metabolic syndrome<sup>7–9</sup>
- Significant risk of haemorrhage and malignant transformation
  - Especially with lesions ≥5 cm

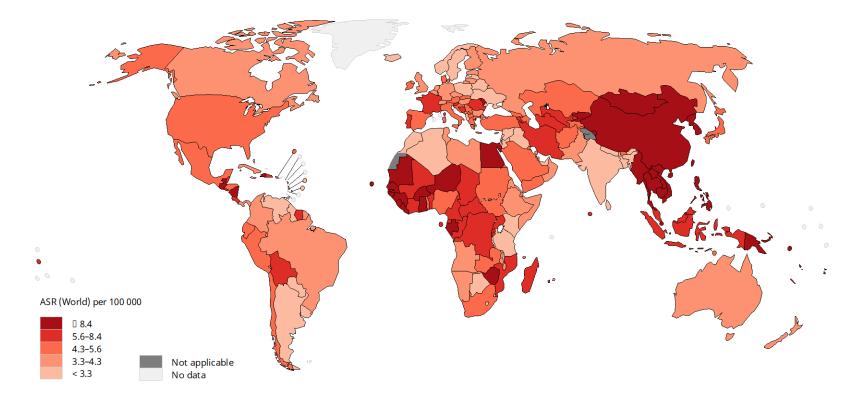
HCAs need to be followed more closely than other benign tumours


1. Bonder A, Afdhal N. *Clin Liver Dis.* 2012;16:271–83; 2. Karhunen PJ. *J Clin Pathol.* 1986;39:183–8; 3. Cherqui D et al. *Gastroenterol Clin Biol.* 1997;21:929–35; 4. Giannitrapani L et al. Ann NY *Acad Sci.* 2006;1089:228–36; 5. Socas L et al. *Br J Sports Med.* 2005;39:e27; 6. Nakao A et al. *J Gastroenterol.* 2000;35:557–62; 7. Bunchorntavakul C et al. *Aliment Pharmacol Ther.* 2011;34:664–74; 8. Bioulac-Sage P et al. *Liver Int.* 2012;32:1217–21; 9. Chang CY et al. *Int J Hepatol.* 2013;2013:604860; EASL CPG benign liver tumours. *J Hepatol.* 2016;65:386–98.

#### Adenoma: Key Management Recommendations

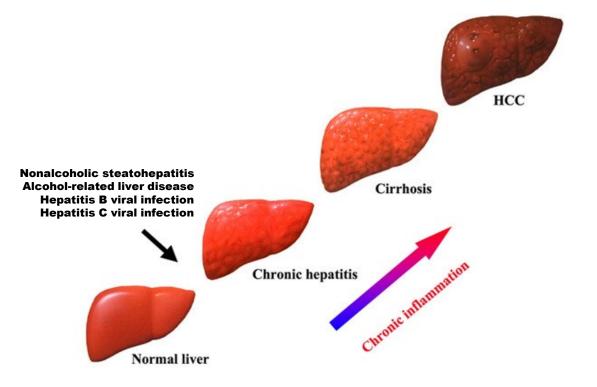
- Adenomas have the potential for hemorrhage or malignant transformation
  - Management should involve a benign liver tumor MDT

| Recommendations                                                                                                                                                                                                                    | of evidence 🛛 Grade | of recommendation |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|
| Base treatment decisions on sex, size and pattern of progression                                                                                                                                                                   | III                 | 2                 |
| Discontinuation of OCPs and weight loss should be advised                                                                                                                                                                          |                     | 1                 |
| Resection irrespective of size is recommended in men and in all cases of proven<br>β-catenin mutation                                                                                                                              |                     | 2                 |
| <ul> <li>Observe women for 6 months after lifestyle change.</li> <li>Resection is indicated with lesions ≥5 cm and those continuing to grow</li> <li>Reassess lesions &lt;5 cm at 1 year with annual imaging thereafter</li> </ul> |                     | 2<br>2<br>2       |
| Bleeding HCAs with haemodynamic instability should be embolized and a residual viable lesion on follow-up imaging is an indication for resection                                                                                   |                     | 2                 |


# Adenoma: Management Algorithm



\*≥20% diameter.


EASL CPG benign liver tumours. J Hepatol. 2016;65:386-98.

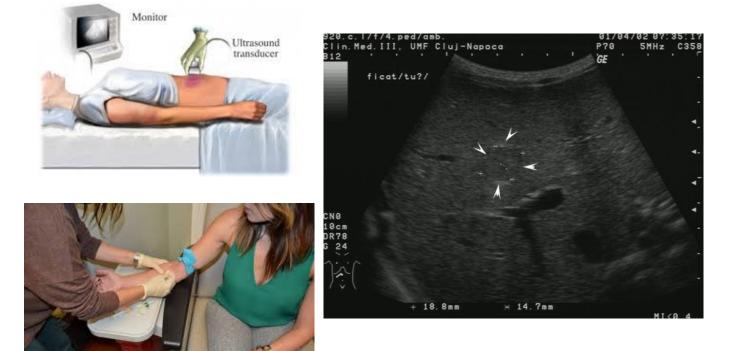
#### Hepatocellular Carcinoma Is 4<sup>th</sup> Leading Cause of Cancer-Related Death Worldwide



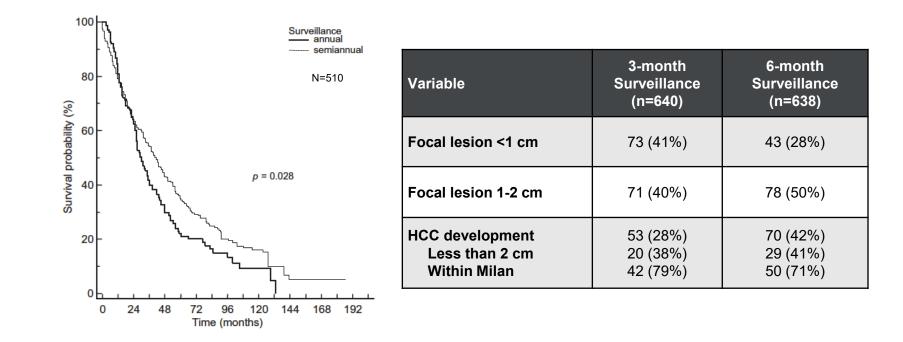
GLOBOCAN. 2020.

#### Most HCC in the United States Occur in the Setting of Cirrhosis



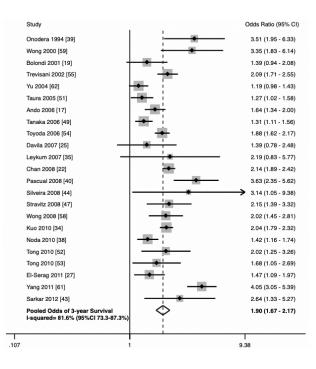

Major Guidelines Recognize the Importance of Routine Surveillance in High-risk Populations

| Society/Institution                                                        | Guidelines                                                                                                                                                                 |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AASLD <sup>1</sup><br>American Association for the Study of Liver Diseases | US every 6 months                                                                                                                                                          |
| EASL <sup>2</sup><br>European Association for the Study of the Liver       | US every 6 months                                                                                                                                                          |
| APASL <sup>3</sup><br>Asian-Pacific Association for the Study of the Liver | AFP + US every 6 months                                                                                                                                                    |
| NCCN <sup>4</sup><br>National Comprehensive Cancer Network                 | AFP + US every 6-12 months                                                                                                                                                 |
| VA <sup>5</sup><br>United States Department of Veterans Affairs            | AFP + US every 6-12 months                                                                                                                                                 |
| JSH-HCC <sup>6</sup><br>Japan Society of Hepatology                        | High-risk: US every 6 months + AFP/DCP/AFP-L3 every 6 months<br>Very High-risk: US every 6 months + AFP/DCP/AFP-L3 every 6 months<br>+ CT/MRI (optional) every 6-12 months |


AFP=alpha-fetoprotein; AFP-L3=*Lens culinaris* agglutinin-reactive fraction of AFP; CT=computerized tomography; DCP=des-γ-carboxyprothrombin; MRI=magnetic resonance imaging; US=ultrasound.

Bruix J et al. *Hepatology*. 2011;53:1020-1022; 2. EASL, EORTC. *J Hepatol*. 2012;56(4):908-943; 3. Omata M et al. *Hepatol Int*. 2010;4(2):439-474;
 NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Hepatobiliary Cancers v1.2016. © National Comprehensive Cancer Network, Inc. 2016. All rights reserved. Accessed February 10, 2016; 5. US Dept of Veterans Affairs. Available at: http://www.hepatitis.va.gov/pdf/2009HCC-guidelines.pdf. Accessed September 23, 2015; 6. Kokudo N et al. *Hepatol Res.* 2015;45.

Abdominal Ultrasound +/- Serum Biomarker, Alpha Fetoprotein, Are Recommended Surveillance Tests




# Surveillance Should Be Performed at Semi-Annual Intervals



Santi et al. Hepatology. 2010; Trinchet et al. Hepatology. 2011.

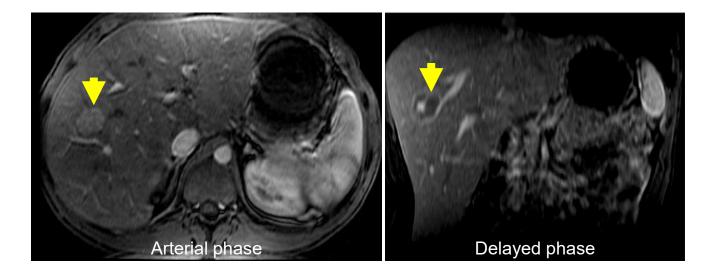
HCC Surveillance Associated With Early Detection and Improved Survival in Patients With Cirrhosis



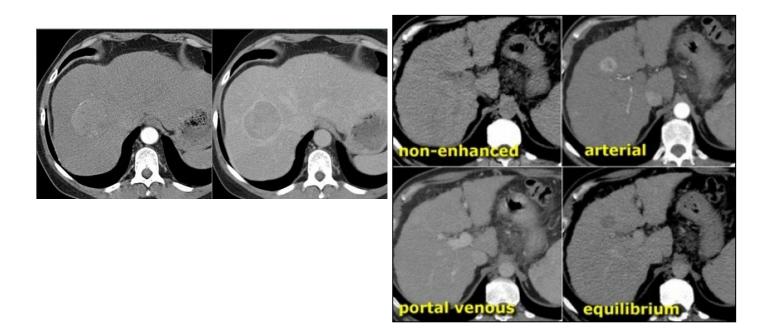
Identified 47 studies with 15,158 patients – 6284 (41.4%) detected by surveillance

Surveillance associated with:

- Early detection OR 2.8, 95% Cl 1.80 2.37
- Curative treatment: OR 2.24, 95%Cl 1.99 2.52
- Improved survival OR 1.90, 95%Cl 1.67 2.17

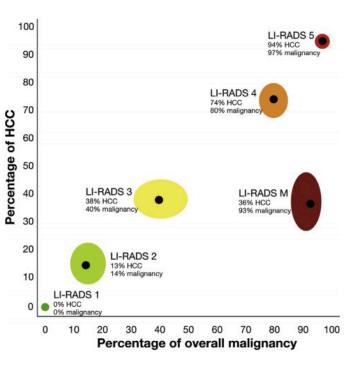

Survival benefit persisted in studies adjusting for lead time bias

# Ultrasound (US) in Surveillance


- Excellent specificity (>90%), but low sensitivity a meta-analysis indicates US sensitivity in detecting early stage HCC may be as low as 63%
- Multiple limitations
  - Does not detect infiltrative disease
  - Sensitivity decreased in difficult patients
    - Cirrhotic nodular livers
    - Obesity
    - Abdominal gas
    - Noncompliant with breath-hold
    - Ascites
    - NASH
  - Highly operator dependent, time
- Real-life US sensitivity likely much lower than that of studies

Del Poggio P et al. *Clin Gastroenterol Hepatol*. 2014;12(11):1927-1933.e2.

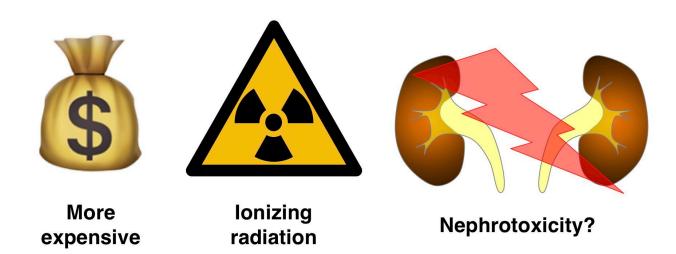
#### HCC Diagnosis Can Be Established Non-Invasively Based on Imaging Alone




# **Triple Phase Imaging**



### **LI-RADS** Criteria for HCC Diagnosis


| LI-RADS Category                                     | Concept and Definition                                                                                                                                                                                               |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LR-1 Definitely<br>Benign                            | <b>Concept:</b> 100% certainty observation is benign.<br><b>Definition:</b> Observation with imaging features diagnostic of a benign entity, or definite disappearance at follow up in absence of treatment.         |
| LR-2 Probably<br>Benign                              | <b>Concept:</b> High probability observation is benign.<br><b>Definition:</b> Observation with imaging features suggestive but not diagnostic of a benign entity.                                                    |
| LR-3 Intermediate<br>probability<br>for HCC          | <b>Concept:</b> Both HCC and benign entity have moderate probability.<br><b>Definition:</b> Observation that does not meet criteria for other LI-RADS categories.                                                    |
| LR-4 Probably<br>HCC                                 | <b>Concept:</b> High probability observation is HCC but there is not 100% certainty. <b>Definition:</b> Observation with imaging features suggestive but not diagnostic of HCC.                                      |
| LR-5 Definitely<br>HCC                               | <b>Concept:</b> 100% certainty observation is HCC.<br><b>Definition:</b> Observation with imaging features diagnostic of HCC or proven to be HCC at histology.                                                       |
| LR-5V Definitely HCC with<br>Tumor in Vein           | <b>Concept:</b> 100% certainty that observation is HCC invading vein.<br><b>Definition:</b> Observation with imaging features diagnostic of HCC invading vein.                                                       |
| LR-M Probable<br>malignancy, not<br>specific for HCC | <b>Concept:</b> High probability that observation is a malignancy, but imaging features are not specific for HCC.<br><b>Definition:</b> Observation with one or more imaging features that favor non-HCC malignancy. |
| LR-Treated Observation                               | <b>Concept:</b> Loco-regionally treated observation.<br><b>Definition:</b> Observation that has undergone loco-regional treatment                                                                                    |



#### Biopsy Only Occasionally Plays a Role in HCC Diagnosis



#### CT Is Not Viable Option for HCC Screening Given Potential Harms



Slide courtesy of Claude Sirlin.

#### MRI Is More Sensitive for Early Tumor Detection but May Be Limited by Cost Effectiveness

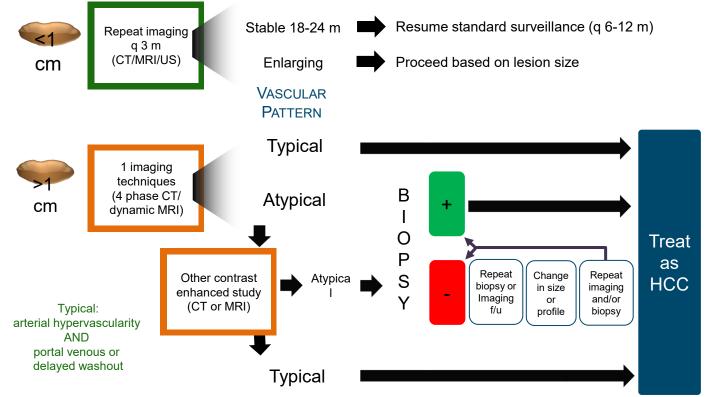
- Prospective study with 407 Child A-B patients (majority HBV-infected)
  - 1112 surveillance round over 1.5 years
  - Semi-annual ultrasound and MRI done in all patients
- 43 patients diagnosed with HCC
  - 32 very early stage and 10 early stage HCC

| Cohort                 | MRI | US  | P-value |
|------------------------|-----|-----|---------|
| Sensitivity            | 86% | 28% | P<0.001 |
| Sensitivity for BCLC 0 | 86% | 26% | P<0.001 |
| Specificity            | 97% | 94% | P=0.004 |



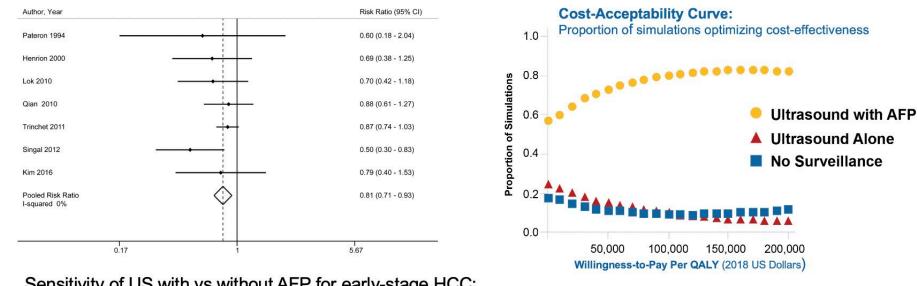
 Meta-analysis of 40 studies on CT or MRI imaging, total of 1135 patients with CT and 2489 patients with MRI

|                         | СТ  | MRI (all) | MRI with Eovist |
|-------------------------|-----|-----------|-----------------|
| Per-patient sensitivity | 83% | 88%       |                 |
| Per patient specificity | 81% | 94%       |                 |
| Per lesion sensitivity  | 72% | 79%       | 87%             |


## **Scans and Biopsies**



- US is used for ease and cost, but sensitivity is low<sup>1</sup>
- Triple-phase helical CT or triple-phase dynamic contrast enhanced MRI is more sensitive<sup>2</sup>
  - Presence of arterial enhancement followed by washout has sensitivity (90%) and specificity (95%)<sup>3</sup>
- When to biopsy and when NOT to biopsy
  - 95% specific for HCC: biopsy NOT needed in most patients<sup>3</sup>
  - Only focal hepatic mass with atypical imaging findings or focal hepatic mass detected in a non-cirrhotic liver should undergo biopsy<sup>3</sup>


1. Del Poggio P et al. *Clin Gastroenterol Hepatol.* 2014;12(11):1927-1933.e2; 2. Digumarthy S et al. *Cancer Imaging.* 2005;5(1):20-24; 3. Bruix J et al. *Hepatology.* 2011;53(3):1020-1022.

#### HCC Diagnosis Following Detection of Mass in Cirrhotic Liver

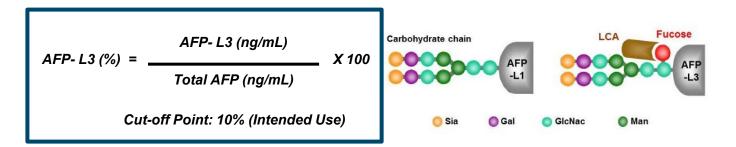


Bruix and Sherman. AASLD guidelines. 2010.

#### AFP Appears to Be of Benefit for Early HCC Detection



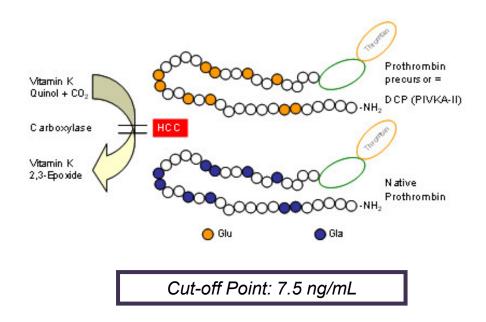
Sensitivity of US with vs without AFP for early-stage HCC: 63% vs. 45% (p=.002)


Tzartzeva et al. Gastroenterology. 2018; Parikh et al. Am J Gastro (in press).

Several Other Biomarkers Are Currently Undergoing Phase II-III Biomarker Evaluation

- AFP-L3 and DCP
- Golgi protein 73 (GP73)
- Glypican 3 (GPC3)
- Osteopontin
- miR-21 (circulating miRNA)
- Serum and urinary metabolites
- Fucosylated kininogen (Fc-Kin)
- Circulating tumor cells/methylated DNA markers

### HCC Surveillance Biomarker: Alpha-Fetoprotein-L3 (AFP-L3)


- AFP-L3 is a fucosylated isoform of AFP.
- AFP-L3 binds to lectin Lens culinaris (lentil) agglutinin (LCA) which interacts with AFP-L3 but not AFP-L1 (majority of AFP).
- Relevance of AFP-L3 to HCC:
  - AFP-L3 has been shown to be elevated in patients with HCC. Elevation of L3 occurs early in HCC
  - AFP-L3 (%) is highly specific for HCC



Sato Y et al. *N Engl J Med.* 1993;328:1802-6; Makuuchi M et al. *Hepatol Res.* 2008;38:37-51.

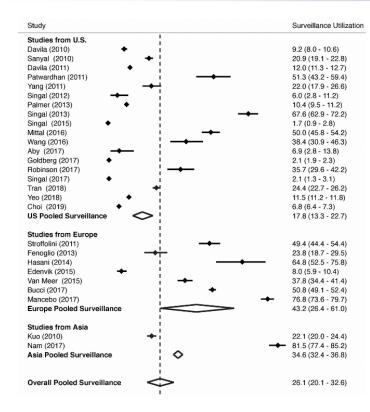
#### HCC Surveillance Biomarker: Des-gamma-Carboxy Prothrombin (DCP)

- Normal hepatocytes post-translationally carboxylate prothrombin precursors before secretion.
- DCP is a secreted non-carboxylated immature form of prothrombin.
- Unconverted glutamic acid residues are due to an absence in many HCC of vit. K dependent carboxylase.
- aka PIVKA-II (proteins induced by vitamin K absence or antagonist-II).
  - The carboxylation defect is also in vitamin K deficiency (also warfarin use)



Sato Y et al. N Engl J Med. 1993;328:1802-6; Makuuchi M et al. Hepatol Res. 2008;38:37-51.

#### GALAD Is a Promising Novel Biomarker Panel for Early Detection


- GALAD: Gender, Age, AFP-L3, AFP, and DCP
- Multi-national nested case control with 6834 patients (2430 HCC, 4404 CLD)

| Variable                       | Sensitivity | Specificity | Correctly classified |
|--------------------------------|-------------|-------------|----------------------|
| UK cohort (all)                | 91.6%       | 89.7%       | 90.6%                |
| UK cohort (Milan)              | 80.2%       | 89.7%       | 87.9%                |
| Japan cohort (all)             | 70.5%       | 95.8%       | 87.2%                |
| Japan cohort (Milan)           | 60.6%       | 95.8%       | 87.7%                |
| Germany cohort (all)           | 87.6%       | 88.6%       | 88.3%                |
| Germany cohort (unifocal <5cm) | 67.4%       | 88.6%       | 87.5%                |

No difference in GALAD performance by cirrhosis etiology, SVR, or HBV treatment

Berhane et al. Clin Gastro Hep. 2016.

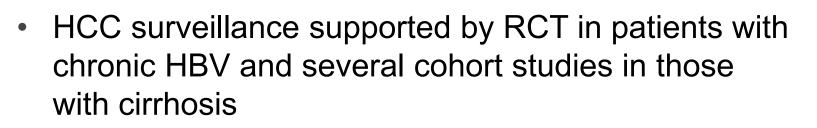
#### HCC Surveillance Is Underused in Clinical Practice



Identified 29 studies between Jan 2010 - Aug 2018

Pooled surveillance estimate was only 26.1%

- Lower surveillance in US studies vs. Europe and Asia (17.8% vs. 43.2% and 34.6%)
- Higher surveillance in GI/Hepatology clinics vs. academic primary care clinics and population-based cohorts (73.7% vs. 29.5% and 8.8%)


Consistent correlates included higher surveillance with GI/Hepatology subspecialty care and increased number of clinic visits and lower surveillance in patients with NASH or alcohol-related cirrhosis.

Wolf et al. Hepatology. 2020.

# Summary 1

- Benign solid liver tumors are common
  - Hemangiomas
  - Focal nodular hyperplasia
  - Adenomas





- Ultrasound has suboptimal sensitivity, particularly in contemporary cohorts
  - Novel blood- and imaging-based modalities are being evaluated
- Surveillance is underused in clinical practice due to patient- and provider-barriers